Search results

Search for "electronic coupling" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • aspect is the electronic coupling between the molecules and the metallic substrate. In this case, the key parameter is the adsorption energy (Ea), which is defined as the energy required to desorb a molecule from the surface. A high Ea is characteristic of molecules chemisorbed on the substrate, where a
  • [15][16]. The ability to tailor the degree of electronic coupling between the molecules and the substrate is of utmost importance when it comes to embedding the interface in a specific application. For instance, if the molecules are interfaced with ferromagnetic electrodes in spin-valve architectures
  • surfaces for the investigation of their intrinsic properties, the minimization of the molecule–substrate interaction is desirable [20]. Furthermore, a weak molecule/metal electronic coupling is required in organic solar cells, because metallic states promote the relaxation of photo-excitations, lowering
PDF
Album
Full Research Paper
Published 30 Aug 2022

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • a 2DM layer grown on a metal characterizes the degree of electronic coupling of the molecular and metallic states. For completeness, we note that quenching of an electronic excitation of a molecule in the first layers on a metal surface can be the result of interfacial charge transfer (CT) [5] or of
PDF
Album
Full Research Paper
Published 03 Nov 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • when reducing the tip–sample distance for improving the STM contrast. The substructure enclosed by the double lobes is reminiscent of the LUMO charge density distribution [10], yet, at negative sample bias. Possible reasons include a non-negligible electronic coupling across the ultrathin film
PDF
Album
Full Research Paper
Published 26 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott
  • critical role of the work function for charging and its influence on the surface wetting capability of the molecules will be highlighted. Work function control of electronic coupling Figure 4 displays angle-resolved ultraviolet photoemission spectroscopy (ARUPS) scans after the 6P molecules were submitted
PDF
Album
Full Research Paper
Published 01 Oct 2020

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • demonstrated that the molecular packing of the monomers within the SAM is beneficial to the intermolecular electronic coupling and further promote charge carrier mobility. In accordance with the simulation, the experimental analysis of the apparent height of the islands as a function of island diameter in the
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • aggregation agent [1][2]. Consequently, many studies explain the SERS effect by the formation of electromagnetic hot-spots, i.e., sites with highly increased field strengths generated by the aggregated nanoparticles. Early SERS studies highlighted the importance of a strong electronic coupling between the
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • amounts of Cl− and/or cations such as Ag+, Mg2+ or Ca2+ can be explained within the understanding of the adatom model – the chemisorption of cationic analytes onto the metal surface is mediated by the Cl− ions, whereas ions like Ag+, Mg2+ or Ca2+ mediate the electronic coupling of anionic species to the
  • silver metal surface. Moreover, the SERS effect is switched on only after the electronic coupling of the adsorbate to the silver surface at SERS-active sites. The experiments presented in this study highlight the SERS-activating role played by ions such as Cl−, Ag+, Mg2+ or Ca2+, which is a process that
  • seems to prevail over the Raman enhancement due to nanoparticle aggregation. Keywords: chloride activation; electronic coupling; photoreduction; silver nanoparticles; SERS-active sites; SERS switch-on effect; Introduction The most common surface-enhanced Raman scattering (SERS) substrate is the silver
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • close to the one of free standing silicene, silicene/Ag(111) displays different electronic properties [14][15]. This is due to a strong electronic coupling between the substrate and the silicene layer. Thus, the features in the angle resolved photoemission spectrometry (ARPES) [1], initially attributed
PDF
Album
Full Research Paper
Published 05 Jan 2018

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • spread of electronic coupling and conductance values [9][10][11][12]. For an archetypal electrode material in single molecule transport studies such as Au, however, their high mobility at room temperature can lead to a large spread in conductance or to problems in trapping the molecule at the interface
PDF
Album
Full Research Paper
Published 17 May 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • , it is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of the molecular devices [50][51][52][53][54][55][56][57]. Therefore, it is difficult to achieve the mass production of molecular electronic devices with identical
PDF
Album
Full Research Paper
Published 01 Mar 2017

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
  • electronic coupling with the gold electrode is required. We note that tripodal adsorbates reported so far adopted anchors with aliphatic thiol groups that are not π-conjugated, such as benzylthiol and adamantylthiol. While some synthetic papers focused mainly on the concept [75][76][77][78][82], initial
  • ., the triazatriangulenium platforms from Herges and co-workers [98] or the tris(4-pyridyl-p-phenyl)methyl platform from Aso and co-workers [35]. While several of these multipods enable a perpendicular arrangement of rod-type molecular structures, the electronic coupling of the π-system of the rod to the
  • resistance when small voltage biases are applied, which makes selenol a better anchoring group with a well-defined electronic coupling and faster electron transport to gold electrodes than thiol for further elaboration toward single-molecule devices. These results are consistent with the trends reported
PDF
Album
Review
Published 08 Mar 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • determines the binding to the substrate and plays an important role in defining the molecular ordering and electronic coupling, which determines the charge flow between the molecular components and the substrate electrode. Much work on various aspects of assembly and its uses has been performed with sulfur
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions

  • Richard L. McCreery

Beilstein J. Nanotechnol. 2016, 7, 32–46, doi:10.3762/bjnano.7.4

Graphical Abstract
  • electronic coupling between the two graphene fragments in the model correlates with experimentally observed attenuation of transport with molecular layer thickness. Electronic coupling is affected significantly by the dihedral angle between the planes of the graphene and the molecular π-systems, but is
  • and electron distributions? Second, does the calculated electronic coupling across the carbon MJ correlate with the observed junction conductance? Third, how does charge transfer between the graphene contacts and molecular layers affect the transport barriers? Fourth, can the model predict the
  • rings are orthogonal. Note also that the H−2 energy varies by 400 meV as the dihedral angle increases from 0 to 90°. 2 Electronic coupling across the molecular layer A primary motive for considering the G9–AB and G9–AB–G9 model structures is the ability to predict electronic coupling between the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2016

High electronic couplings of single mesitylene molecular junctions

  • Yuki Komoto,
  • Shintaro Fujii,
  • Tomoaki Nishino and
  • Manabu Kiguchi

Beilstein J. Nanotechnol. 2015, 6, 2431–2437, doi:10.3762/bjnano.6.251

Graphical Abstract
  • , electronic conductance of the single molecular junction can be described by two parameters of (i) the electronic coupling between electrodes and molecule and (ii) the relative energy level alignment of the conduction orbital of molecule with respect to the Fermi level of the metal electrodes. By fitting the
  • conductance for the direct π-bonded molecular junctions was ascribed to the experimentally obtained large electronic couplings of ca. 0.15 eV for the two states. Based on the stretch length of the conductance trace and the large electronic coupling obtained from the I–V analysis, we proposed two structural
PDF
Album
Full Research Paper
Published 18 Dec 2015

Large-voltage behavior of charge transport characteristics in nanosystems with weak electron–vibration coupling

  • Tomáš Novotný and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2015, 6, 1853–1859, doi:10.3762/bjnano.6.188

Graphical Abstract
  • theory treatment of the system—for a general strategy see [10]. Since the method is aimed at treatment of “open” central regions (large electronic coupling to the leads quantified by Γ’s), there are expected no strong correlation effects associated with the local Coulomb interaction which would have to
PDF
Full Research Paper
Published 03 Sep 2015

Electrical properties and mechanical stability of anchoring groups for single-molecule electronics

  • Riccardo Frisenda,
  • Simge Tarkuç,
  • Elena Galán,
  • Mickael L. Perrin,
  • Rienk Eelkema,
  • Ferdinand C. Grozema and
  • Herre S. J. van der Zant

Beilstein J. Nanotechnol. 2015, 6, 1558–1567, doi:10.3762/bjnano.6.159

Graphical Abstract
  • electronic coupling to the electrodes, together with better level alignment than the other three groups. An analysis of the mechanical stability, recording the lifetime in a self-breaking method, shows that Py and SAc yield the most stable junctions while SMe form short-lived junctions. Density functional
  • electronic coupling between the molecule and the metal electrode are essential to characterize charge transport in single-molecule junctions and to create new fundamental devices such as molecular motors or molecular machines [26][27]. Several previous studies have shown that stable and reproducible single
  • single-level model allows to quantify the electronic coupling between the various molecules and the electrodes and the injection barrier [33]. Additionally, we have performed self-breaking measurements, in which we measure the low-bias conductance of a molecular junction as a function of time until the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • bandgap depending of their chirality. This fundamental physical difference will have tremendous importance as concerns the electronic coupling, the energy transfer and the migration of excitons between the semi-conducting polymer and the nanotubes [15]. Therefore, the results are compared with original
  • 2%. This is practically confirmed by our DFT calculations predicting strong interaction between PPV and SWNTs, with selective interaction depending on the nature of the nanotube (metallic or semiconducting). Semi-conducting tubes exhibit strong electronic coupling between the nanotube LUMO and the
PDF
Album
Full Research Paper
Published 08 May 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • to as energy disorder, σ), the mean electronic coupling between molecules, , the mean number of neighbors, M, and the reorganization energy, λ. These results are shown in Table 2. These microscopic parameters can be used to calculate the charge carrier mobility [41]: where e is the electric
  • (Op)3 reacts less strongly on charging, leading to a smaller reorganization energy, λ, than for Alq3. The slightly higher electronic coupling, , of Alq3 is compensated by a smaller number of neighbors, M. The calculated HOMO and especially LUMO levels are comparable to those of Alq3 (−5.14 and
  • disorder, intermolecular electronic coupling, reorganization energy, etc. Thus, this work thereby constitutes one of the quintessential multiscale problems. These properties by themselves require corresponding, often sophisticated and mutually very different, description formalisms. This is indicated by
PDF
Album
Full Research Paper
Published 05 May 2015

The impact of the confinement of reactants on the metal distribution in bimetallic nanoparticles synthesized in reverse micelles

  • Concha Tojo,
  • Elena González and
  • Nuria Vila-Romeu

Beilstein J. Nanotechnol. 2014, 5, 1966–1979, doi:10.3762/bjnano.5.206

Graphical Abstract
  • display better catalytic activity than nano-catalysts prepared by other methods [10]. More complex structures, such as bimetallic nanoparticles, have also been prepared via microemulsions [11][14][16][17][18][19]. The combination of two different metallic atoms can result in the electronic coupling
PDF
Album
Full Research Paper
Published 04 Nov 2014

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • thiol binding to the gold surface indicating the significant electronic coupling between the benzenethiol and the surface. It is noteworthy that the C≡C stretch mode is so sensitive to temperature in this system, as also found in other reports on Raman of alkynes [37]. Their large polarizability renders
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Probing the electronic transport on the reconstructed Au/Ge(001) surface

  • Franciszek Krok,
  • Mark R. Kaspers,
  • Alexander M. Bernhart,
  • Marek Nikiel,
  • Benedykt R. Jany,
  • Paulina Indyka,
  • Mateusz Wojtaszek,
  • Rolf Möller and
  • Christian A. Bobisch

Beilstein J. Nanotechnol. 2014, 5, 1463–1471, doi:10.3762/bjnano.5.159

Graphical Abstract
  • the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major
PDF
Album
Full Research Paper
Published 05 Sep 2014

DFT study of binding and electron transfer from colorless aromatic pollutants to a TiO2 nanocluster: Application to photocatalytic degradation under visible light irradiation

  • Corneliu I. Oprea,
  • Petre Panait and
  • Mihai A. Gîrţu

Beilstein J. Nanotechnol. 2014, 5, 1016–1030, doi:10.3762/bjnano.5.115

Graphical Abstract
  • the likelihood of the electron transfer. In Marcus’ theory of the electron transfer [51][52][53] an important factor in the expression of the electron transfer rate is the electronic matrix element describing the electronic coupling between the excited state of the pollutant and a state in the
PDF
Album
Full Research Paper
Published 11 Jul 2014

Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

  • Bernd M. Briechle,
  • Youngsang Kim,
  • Philipp Ehrenreich,
  • Artur Erbe,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Ulrich Groth and
  • Elke Scheer

Beilstein J. Nanotechnol. 2012, 3, 798–808, doi:10.3762/bjnano.3.89

Graphical Abstract
  • (MCBJs) [5][12] and modified STM [26] techniques were applied to create single-molecular junctions. It has been argued that strong electronic coupling between electrodes and the switching core may block the switching procedure [5][27][28][29]. This strong coupling is supposed to be enhanced by the
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • microstructure is most interesting for basic research on nanogranular metals as artificial nanosolids, in particular if the electronic coupling strength between the metallic grains can be tuned through the insulator-to-metal transition. The exact nature of this transition in three spatial dimensions is not known
  • dielectric matrix, which are subject to an intergranular electronic coupling due to a finite tunneling probability between the crystallites or grains. The binary systems Pt–Si and Pt–Co discussed previously fall into this class. For nanogranular materials the semiclassical approach of Boltzmann transport
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities